

ALCOHOLS, PHENOLS AND ETHERS

DEHYDRATION OF ALCOHOLS

Formation of Alkene

i)
$$H_{3}C - CH_{2} - OH$$

Ethanol (1⁰)
ii) $H_{3}C - CH - CH_{3}$
 $H_{3}C - CH = Propene$
Propene

+ H₂O

$CH_2 + H_2O$

H₂O +

Step III : Formation of Ethene by deprotonation $\begin{array}{ccc} H & H \\ H & -C & -C \\ H & H \\ H & H \\ H & H \\ \end{array} \xrightarrow{H} > C = C \xrightarrow{H}_{H} + H^{+}$ (Ethene)

Order of ease of dehydration of alcohols

Tertiary > Secondary > Primary

b) $C_2H_5 - O - C_2H_5$

d) $C_2H_5 - O - SO_3H$

c) C_2H_5OH

2) $C_2H_5OH \xrightarrow{X} C_2H_4$ What is 'X'?

- a) Conc. H₂SO₄
- **b)** CaCl₂
- c) CaO
- d) Al_2O_3

DEHYDRATION OF ALCOHOLS FORMATION OF ETHER.

$$R - OH + HO - R \xrightarrow{Conc. H_2SO_4} R - O - R + H_2O$$
413 K (Ether)

Note : 383 K $OH + H - OSO_3H \longrightarrow R - OSO_3H + H_2O$ **R** – (Conc.) (alkyl hydrogen sulphate)

$$\begin{array}{ccc} & & & & & & & & \\ H_5C_2 - & OH + H & - & OSO_3H & & & & & & \\ (Ethanol) & (Conc.) & & & & (ethyl hydrodynamic) \\ (excess) & & & & & \end{array}$$

$$H_{5}C_{2} - O - SO_{3}H + H - O - C_{2}H_{5}$$

$$413 K$$

$$H_{5}C_{2} - O - C_{2}H_{5} + H_{2}SO_{4}$$
(diethyl ether or Ethoxyethane)

H + H₂O ogen sulphate)

iii) Deprotonation to give ether

$$H_{3}C - CH_{2} - O^{+} - CH_{2} - CH_{3} \longrightarrow H_{3}C - C$$

$CH_2 - O - CH_2 - CH_3 + H^+$

i) Only simple ethers are prepared by this method, if a mixture of two different alcohols is used then a mixture of three different ethers is obtained which is difficult to separate.

ii) Ethers prepared from this method is from only 1⁰ alcohol because 2^o & 3^o alcohols gives alkene by elimination.

iii) If temp rises above 413 K then alcohol gives formation of an alkene. H^+ $H_2C = CH_2$ $H_3C - CH_2 - OH$ H^{+} $H_{5}C_{2} - O - C_{2}H_{5}$

1). Removal of water molecule from an alcohol is called...of alcohols.

- a) hydration
- **b)** dehydration
- c) hydrogenation
- d) dehydrogenation

2). Dehydrating agent used for dehydration of alcohols is...

a) Conc. HCl

b) Conc. H₂SO₄

c) Conc. HNO₃

d) None of these

- **3). Ethyl alcohol when treated with concentrated sulphuric acid at 413K** gives...
 - a) Ethene
 - **b) Ethyl ether**
 - c) Diethyl ether
 - d) None of these

OXIDATION OF ALCOHOLS

Reactions involving breaking of C – O bond

Oxidation of Alcohols

Distinguishable reaction Between 1⁰, 2⁰ and 3⁰ alcohols

Oxidati **Oxidation of alcohols is used to differentiate** (PCC) between 1⁰, 2⁰ and 3⁰ alcohols

+ H₂O

iii) Oxidation of 3^o alcohol $\begin{array}{cccc} CH_{3} & CH_{3} \\ H_{3}C - C - OH \\ CH_{3} & CrO_{3} \\ CH_{3} & H_{3}C - C \\ CH_{2} \\ CH_{2} \\ \end{array} + \begin{array}{cccc} H_{3}C - C \\ H_{3}C - C \\ CH_{2} \\ CH_{2}$

H_2O

Note :

1[°], 2[°] and 3[°] alcohol on vigorous oxidation gives carboxylic acid but 1⁰ alcohol gives carboxylic acid with same no. of 'C' atom, 2^o alcohol gives carboxylic acid with one 'C' atom less and 3^o alcohol gives carboxylic acid with two 'C' atoms less.

1. Oxidation of alcohols is carried out by using...

a) dilute H₂SO₄ and K₂Cr₂O₇

b) pyridinium chlorochromate

c) pyridinium dichromate

d) All of these

2. Primary alcohol on oxidation gives...

a) aldehydeb) ketone

c) Both a & b

d) None of these

3. Secondary alcohol on oxidation gives...

a) aldehyde

b) ketone

c) Both a & b

d) None of these

DEHYDROGENATION OF ALCOHOLS WITH 'Cu' AT 573 K

Catalytic dehydrogenation is also useful to distinguish 1°, 2° and 3° alcohols

1. Primary alcohols on dehydrogenation with Cu at 573 K gives

a) ketoneb) aldehyde

c) acid

d) None of these

2. Ethanol on dehydrogenation gives...

a) Methanol

b) Ethanal

c) Both a & b

d) Ethyl chloride

3. Propan – 2– ol on dehydrogenation gives --

a) acetaldehyde

b) Formaldehyde

d) All of these

